Cerebras LLM
The Cerebras AI LLM provider enables your agent to use Cerebras AI's language models for text-based conversations and processing.
Installation
Install the Cerebras-enabled VideoSDK Agents package:
pip install "videosdk-plugins-cerebras"
Importing
from videosdk.plugins.cerebras import CerebrasLLM
Authentication
The Cerebras plugin requires an Cerebras API key.
Set CARTESIA_API_KEY in your .env file.
Example Usage
from videosdk.plugins.cerebras import CerebrasLLM
from videosdk.agents import CascadingPipeline
# Initialize the Cerebras LLM model
llm = CerebrasLLM(
model="llama3.3-70b",
temperature=0.7,
max_tokens=1024,
)
# Add llm to cascading pipeline
pipeline = CascadingPipeline(llm=llm)
note
When using .env file for credentials, don't pass them as arguments to model instances or context objects. The SDK automatically reads environment variables, so omit api_key and other credential parameters from your code.
Configuration Options
model: (str) The Cerebras model to use (default:"llama3.3-70b"). Supported models include:llama3.3-70b,llama3.1-8b,llama-4-scout-17b-16e-instruct,qwen-3-32b,deepseek-r1-distill-llama-70b(private preview)api_key: (str) Your Cerebras API key. Can also be set via theCEREBRAS_API_KEYenvironment variable.temperature: (float) Sampling temperature for response randomness (default:0.7).tool_choice: (ToolChoice) Tool selection mode ("auto","required","none") (default:"auto").max_completion_tokens: (int) Maximum number of tokens to generate in the response (optional).top_p: (float) Nucleus sampling probability (optional).seed: (int) Random seed for reproducible completions (optional).stop: (str) Stop sequence that halts generation when encountered (optional).user: (str) Identifier for the end user triggering the request (optional).
Additional Resources
The following resources provide more information about using Cerebras with VideoSDK Agents SDK.
- Cerebras docs: Cerebras documentation.
Got a Question? Ask us on discord

